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Theory of traffic jam in a one-lane model
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We propose a generalized optimal velocity model to describe one-lane traffic flows. We carry out a weakly
nonlinear analysis based on the technique of soliton perturbations and determine the selected propagating
velocity, amplitude, and width of the interface between a jam state and a nonjam state. From the direct
simulation of the model, we have confirmed the validity of our theoretical anal\&i863-651X98)00204-9

PACS numbegs): 05.20-y, 47.54+r, 46.10+2z, 47.20.Ky

. INTRODUCTION U(h)=tanhh—2)+tank2),

Recently, the cooperative dynamics in dissipative systems V(h)=1+fy[1-tanhh—2)] 2
consisting of discrete elements has attracted much attention.
There has been research on granular materials in an effort for the latter explicit calculation, wherf, is a constant. We
understand the unusual behaviors of discrete element syput these optimal velocity functions as the product fddivi
tems[1] such as convectiof?], size segregatiof3], bub- in Eq. (1) because the driver of, cannot accelerate the
bling [4], standing waveE5], and localized excitationi$] as  vehicle without enough forward distance,,;—x, even
well as thermodynamic descriptions of granular particles unwhen the distance,—x,_; becomes short. In other words,
der vertical vibrationg7]. In particular, it is interesting that the model includingU (X, 1—Xp) + V(Xa—Xn—1) iS math-
flows of granular particles through a vertical pipe can exhibitematically unstable and unphysical because the acceleration
some interesting characteristics of discrete element systenfy V causes a crash of vehicles. This mo@glwith Eq. (2)
such as the formation of density waves and a power law itis a generalization of the optimal velocit@V) model pro-
the power spectrum. Similarly, traffic jams in a highway alsoposed by Bandet al. [9]
are an attractive subject for not only engineers but also
physicists[8]. Similarities between the two phenomena are Xn=a[U(Xy11—Xn) = Xn]. (3)
obvious. Both consist of discrete dissipative elements, ve-
hicles, and particles that are confined in a quasi-one- Our model is also similar to the model of granular flow in
dimensional system such as a highway or a pipe. There is am one-dimensional tube
optimal velocity in each system: The competition between_ _ )
relaxation to the optimal velocity and acceleration of par-X,=Z[U(Xp+1—Xn—1) = Xnl T ©(Xn11—Xn) — @(Xp—Xn—1),

ticles produces traffic jams. We thus expect that there exists 4)
a common and universal mathematical structure behind these _
phenomena. whereU and ¢ are the sedimentation rate and soft-core re-

There are many models to describe traffic flows andpulsion force, respectivelj0]. The explicit forms ofU and
granular flows through a pipe. We believe that universal bethe forcee are not important in our argument. Although real
haviors do not depend on the choice of the model. We prosystems contain a variety of vehicles or particles and higher-
pose here a simple generalized optimal velocity model foimensional effects, we believe that the most essential parts

traffic flows of both traffic flows and granular flows through a pipe can be
B ) understood by pure one-dimensional mod@élsand (4).
Xn=a[U(Xp1+1—Xn) V(Xn—Xn—1) —Xn] (1) There is a fluid field model to describe traffic flojsl]

that consists of mass-conservation and momentum-
wherex,, is the position of thenth car anda is a constant conservation laws. This fluid model is similar to fluid models
called sensitivity which is a parameter to represent driver’s that describe granular flows through a pipe and fluidized
response. This model contains the psychological effect obeds[12—14 and a mixture of polymergl5]. At first sight
drivers. Namely, the driver at,, takes care of not only the fluid models are very different from discrete models such as
distance ahead,.;—X, but also the distance behind, (1), (3), and (4). However, there is common mathematical
—Xn—1. The optimal velocity functiold should be a mono- structure. The fluid models of granular flows are reduced to
tonically increasing function of the distancexf. ;—x, and  the Korteweg—de VriedKdV) equation near the neutral
V should be a monotonically decreasing function x3f  curve of the linear stability13,14. Kurtze and Hond 16]
—X,—1. Thus we adopt also derived the KdV equation from the fluid model of traffic
flow [11]. Of course, it is easy to demonstrate that the dis-
crete modelg1), (3), and(4) are reduced to the KdV equa-
*Electronic address: hisao@phys.h.kyoto-u.ac.jp tion near the neutral curve. Thus, at least it has been con-
TElectronic address: tmknaka@eng.shizuoka.ac.jp firmed that(i) there is a universal mathematical structure
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behind traffic flows and granular flows regardless of thepropagating velocity, the amplitude, and the width of kinks.

choice of a specific model an@d) solitons perturbed by dis- To demonstrate the quantitative validity of our analysis we

sipative corrections play an important role. will compare it with the result of our simulation in Sec. IV.
Unfortunately, the KdV equation is not adequate to de-After the completion of our analysis of Eql), we will

scribe traffic jams because its solutions do not contain anyriefly discuss the relation of the result and the expected

interface solutions connecting the jam state and the nonjamesults in Eq.4) and fluid models in Sec. V. We will sum-

state. Komatsu and Safh7] solved such a puzzle from the marize the results in Sec. VI.

analysis of the original OV modé¢B). They have shown that

Eq. (3) can be reduced to the modified KAWIKdV) equa-

tion at a critical point for the heteroclinic bifurcati¢f8] or II. LINEAR STABILITY OF UNIFORM FLOW

the most unstable point on the neutral curve. They also show ) . ] . - )

that symmetric kink solitons deformed by dissipative correc- In this section we summarize the linear stability analysis

tions describe a separation between bistable states. Th@f the uniform propagating flow. It is obvious that there is a

analysis is also consistent with a recent analysis of the exconstant propagating solution wit ; —x,=const. Let us

actly solvable models, which may be regarded as simplifiedeWrite Eq.(1) as

optimal velocity modeld19]. However, as will be shown,

the generalized optimal velocity modél) and the granular Fn=a[U(h+fn+1)V(h+fn)—U(h+rn)V(thfl)—rn],

model(4) as well as the fluid model of traffic flowd 1] and (5)

fluid models in granular flowg13,14] are not reduced to the

MKdV equation at the critical point or the most unstable whereh is the average distance of successive carsrand

point on the neutral curve. In particular, Komaf20] has  x,.;—X,—h. The linearized equatiofb) aroundr ,(t)=0 is

shown that(i) interfaces(kinks) between the jam state and given by

the nonjam state are asymmetriic) the critical point is, in

general, different from the most unstable point on the neutral F—alU (MVR) (e —r
curve, and(iii) eventually one branch of the coexistence n=alU (VN (a1 =rn)
curve exists in the linearly unstable region. He also demon- +Uh)V' (h)(rp=rn_1)—rnal, (6)

strated that the MKdV equation is recovered in a special

choice of parameters of the fluid model, while fluid modelswhere the prime refers to the differentiation with respect to
cannot be reduced to the MKdV equation in general caseshe argument. With the aid of the Fourier transformation
Thus we need to clarify the characteristics of the dissipative

particle dynamics, which contains moddlsy and (4) and 1 N

fluid models[11,13,14. For this purpose, we will focus on rq(t)= N E exg —ignh]r,(t), !

the analysis of the simplest mod€él) to characterize the n=1

separation between the jam state and the nonjam state be-

cause the time needed to simulate madglis much shorter With g=27m/Nh and the total number of caM, we can

than that for fluid models. rewrite Eq.(6) as
This paper is organized as follows. In the next section we
briefly summarize the result of the linear stability analysis on [i—o (Q][d—0o_(q)]rgq(t)=0, (8

the uniform solution of Eq.(1). In Sec. Ill we derive a
steadily propagating solution and discuss the selection of theith

o.(q)=— gt \/(a/2)2—aDh[U,V][l—cos(qh)]+ia(UV)’sin(qh), (9

where we drop the argumert in U and V. D,[U,V] gh
=U’(h)V(h)—U(h)V’(h) denotes Hirota’s derivative. The 2(UV)’zco§(7
solution of the initial value problen(8) is the linear combi-
nation of terms in proportion to ekp. (g)t] and expo_(9)t].  Thus the most unstable mode existg|ht—0 and the neutral
The mode proportional to ekp_(q)t] can be interpreted as curve for long-wavelength instability is given by
the fast decaying mode, while the term proportional to
exd o, (g)t] is the slow and more important mode. 2(UV)'2

The violation of the linear stability of the uniform solu- a=an(h)= D [U,V]
tion (6) is equivalent to Rer, (q)]=0 where Rgo . ] is the
real part ofo,. Assuminggh#0 (gh=0 is the neutral The neutral curve in the parameter spaaghj is shown in
mode, the instability condition is given by Fig. 1 for fy=1[1+tanh(2) in Eq. (2). For later conve-

=aDy[U,V]. (10

(11)
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88— pansion adopted by Komatsu and Sgtd| for Eq. (3) and
T a;=0 cannot be used in our case.
' Of course, this irregularity is from the long-wavelength
16 approximation. The regularity of the original mod@) can
s | be checked easily as follows. Let=nh be regarded as a
’ continuous variable. From(x+ h,t) = exd £hd,]r(x,t) or the
= 14 Fourier component eXprigh] of the translational operator
3k exd +=hd,], the function of the translational operation in the
’ shortest scalegh= = in the Fourier spageis r(x*h,t)—
12t —r(x,t). Thus our mode(5) for r(x,t) in the shortest scale
! is reduced to
R N R o2r=a[W(r)—a,r],
06 08 1 12 1.4h 1.6 1.8 2 22 24
FIG. 1. Plots of the coexistence cur¢43) [the solid line de- W(r)=U(h—r)V(h+r)—=U(h+r)V(h—-r). (15

noted by coly) ] and the neutral curvéll) [the dashed line denoted o ) o

by an(h)] as functions oh. The scattered points are the maximum Substituting Eq. (2) into Eg. (15), it is easy to

and the minimum distances of successive cars for a gweb-  Show W' (r)=—[secti(h—r—2)+secfi(h+r-2)]{1

tained from our simulation. +fo[ 1+tanh(2)}<0. Then the growth rate of the linearized
equation(15) by r —dy~exgAt+ikx] is given by

~ —a*ya®—4a|W'(dy)|

)\ - 2 l

nience we write the explicit form of the long-wavelength
expansion ofo, in the vicinity of the neutral curve

(16)

a—ay(h) . (qh)®  (gh? , » ,
—2(q )e—i 6 C°_4a (h)co where REN]<O0 for anyd,. Thus the original mode(l) is
an(h) n stable for the perturbation in the short scale.
5 The short scale instability in Eql4) thus arises from the
+0((gh)), 12 .S , _
insufficiency of the simple long-wavelength expansion. For a
wherecy,=(UV)'. Thus the uniform state becomes unstable theoretical analysis beyond the simple long-wavelength
analysis, we have two methods. One is to derive a regular-
1. NONLINEAR ANALYSIS ized 'Iong.-waveleng'gh equatiqn with the help of the Page
proximation[21], which is an interpolation of the short-scale
The simplest way to describe the nonlinear dynamics isehavior and the long-scale behavior. However, the short-
the long-wavelength expansion with the help of a suitablescale analysis of the discrete model contains some subtle
scaling ansatz. It is easy to derive the KdV equation near thproblems because of the existence of the cutoff scale. In
neutral curve from Eq(1) as in the case of fluid models addition, the reduced partial differential equation is more
[11,13,14. As mentioned, to describe the traffic jam forma- complicated than the original discrete mod#). Another
tion, however, we should choose the critical poist H) method is that we focus only on steadily propagating solu-
=(ag,he) at[U(h)V(h)]"=0, where the coefficient af,r>  tions for the theoretical analysis. A dynamical behavior, ex-
becomes zero on the neutral curve, because the KdV equaept for steady states, can be seen from the direct simulation
tion has only pulse solutions while cubic nonlinear terms carof the discrete mode(l), where simulation of modd(l) is
produce the interface solution to connect two separated danuch easier than the reduced partial differential equations
mains. The explicit critical point of Eq(2) with f,=1[1  such as the MKdV equation. In addition, our long-time simu-

o.(q)=icegh—c3

+tanh(2) is given by lation suggests that the solution of mod&) seems to be
quickly relaxed to a steadily propagating state. Thus we
h.=2—tanh %(1)=1.65343; a,=32f2~1.638 66. adopt the latter method for our analysis.
(13 To obtain the steadily propagating kink solution, at first

we eliminate the fast decaying mode in Ef) as
Unfortunately, the reduced equation based on the long-

wavelength expansion of our model is an ill-posed equation. [0i— 0o (d)Ir (X =(o.—a_) 'N[r(x,t)], (17
In fact, the scaling of variables such ag(t)=er(z,7), z .
= e(n+cot), and 7= €%t with e=\(a.—a)/a, leads to whereN[r] represents the nonlinear terms
N[
9.F =210, 3—adar +azdar? (14 %=U(h+eh"xr(x,t))V(h+r(x,t))—U(h+r(x,t))

in the lowest order, whera,, a,, andaz are constants. The _ , )
solution of Eq.(14) divergeé wi%chin a fi?ﬂte time. The reason XV(h+e M (1) = U (V) (M= 1r(x,b)

is simple. Its linearized equation aroung d, is unstable for +U(h)V'(h)(1—e "%)r(x,t). (19

all scales because the solution with dy=exgdikz+\,7] has

the growth rate Rx,]=2k?azd,, which is always positive Since @, —o_) ! is the inverse of the polynomial of the
when azd,>0. Therefore, the simple long-wavelength ex- differential operators, it is convenient to use the expansion
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(o.—o_) t=a 11— (2h/a)(UV) d,+0O(h?)]. It should Eq.(24) is not an exact solution of E¢21), there should be
be noticed that Eq(17) contains most of the important in- an interaction between the kink and the antikink that is an

formation and no instability in the time evolution. exponential function of the distance between tH&®].
Here we assume the scaling of the variables dy Now let us discuss the effect of perturbative terms in Eq.
(ac—a)la, as (21). It is known that the perturbation of solitons or the so-

lution including a free parameter becomes unstable except

6yCo for the solution where the parameter has a special value
rx,t)=e |(UV)”’|R(Z)’ z=e\6y[n+cot—e2y(D)t],  [17,23-28. The linearized equatio21) can be reduced to

(19 d
. . LRy =1-M[Ro], (25)
where the arguments id andV are fixed ath=h. andy is z
the positive free parameter that will be determined from tthh ere
perturbation analysis. We substitute Ed9) into Eq. (17)
and expandN[r] as L= 3+ 3,— 6Ry3,Ro— 3R5d,+2892Rg+ 483,Rod,
S +2BRyd>. (26)

N[rl/a= 3 3 h"Crofr™=h*U'V g dfr+ -,
e To obtain a regular behavior of perturbation @(¢) the

(20 perturbed solution should satisfy the solvability condition
Wherel Co=3(UV)", 1C22:%Dh[U:V]’: 1C23=ﬁ(UV)”, d L d
C31=5(UV)"”, Cgp=15D[U,V]", Cy=5(UV)"" with (\PO,—M[RO] = ”mf dz ¥y,—M[R,]=0, (27)
Dy[U,V]' =(d/dh)D,[U,V]. Substituting Eq(19) into Eq. dz Lood —L dz

(17) with the help of Eq{(20), we obtain
where 4= eN+/6y and ¥, satisfies

a dZ—R—R(R2—1)+ i(RZ‘) = iM[R] (21) LMW,=0, £T=-8-0,+3R%3,+2BRyd>. (28
dz de de _EdZ ’ 0 ’ z z 0Yz oYz -
When we adopt Eq(24) asRy, ¥, also should satisfy the
where8=3D[U,V]'/(2yco[(UV)"]) and periodic boundary condition. Thus we assume
dR\? dR® 1( dR Vo(2)=P " (z—2,) -1+ (z—z.), (29
M[R]:\/; Pza(E) _Pszﬁ_PMR‘l_ E 45 ° ’ °
Where\lfgt) is the solution of Eq(28) when we replacé,
#r 2dr\]1 [ zR by R(™). Sincedy=4,¥, satisfies
——— — | |+ vy —=—¥tR]|. (22 _ _
dz 7y dz 2y°7 LT0y(2)=0, ILT=—3?—1+3R%+2BRyd,, (30)
Here y=dy/dr with 7=et, and 1f= V6D [U,V]/co, pas  the solution of Eq(28) can be expressed by
=3\6U"V'/\co[(UV)"], p3z=3/2D[U,V]"/
m mr " + [z
|(UV) |, . and p41:\3CO(UV) /2\ 2|(UV) | . \I,E)i)(z):a;f dz/(secmaiz/])lmi,
AssumingR(z) =Ry(z) + eRy(2) + - - -, we obtain a solu- 2 )2
tion
V5 (2)=—-V57(~2), (3D)
. B+ 2 ° °
Ry /(z)=tanh(6.2z), ei:T (23 where we use
in the lowest order. This solution represents a kink or an @E)i)(z):(secﬂj 0i2])1/92r. (32

antikink connecting the jam state and the nonjam state. No-

tice that the solution is not localized and does not satisfy thdhe constantx. in Eq. (31) is determined to satisfy¥,
periodic boundary condition. Therefore, we need a carefu(*%)=—1. Thus we obtain

treatment of the boundary condition. In fact, our preliminary

result[22] suggests that the selected valuejolinder the 20

open boundary condition is different from that under the pe- = |g_r)'

riodic boundary condition.

In this paper we restrict ourselves to the case under the . I'(1/26% +n)
periodic boundary. To satisfy the periodic boundary condi- |§1i>=f dx(secrx)llf’iﬂn: Jr * ,
tion we use —e I'(1/26% +n+1/2)

(33
Ro(2)=R{(z—z,)—1+R\ ) (z—z.) (24)
wherel'(x) is the Gamma function. It should be noticed that
as an approximate solution of the lowest-order equa@dn ¥ (2) is not a localized function. Therefore, we cannot ne-
where a kink-antikink pair exists a=z, andz=z_. Since glect the boundary effects in the solvability conditi(2¥).
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Let us rewrite Eq(27) as 0.7 . — . —— . .
Ap(®)
[WoM[Ro]1- = (Po(2),M[Ro]) (34) 06 r data o
where[ f(z)]-, =f(L)—f(—L). From Eq.(22) it is obvious © 05 .
that the contribution, except for terms proportionaptg and '§
ZR, is zero on the left-hand side of E@34) under any g 04 E
boundary conditions. Notice that the contribution from the .S
term proportional tdR vanishes because of its symmetry. If & 03 r s 7
we adopt the periodic boundary condition and use E2#®. é’
and (29), the contribution from the ternp,; cancels[29]. 021 1
Thus the left-hand side of E¢34) is reduced to o1 | |
L _ y O L 1 1 L 1 1 1 L L
[\POM[RO]]*L_YT/ZL' (39 0 005 0.1 0.15 02 025 0.3 035 04 045 05
[
On the other hand, the right-hand side of Eg4) is the FIG. 2. Comparison oA between theoretical valugsolid line
integration of the product of Eq$22) and(32). A(e)=1.136 63] in Eq. (41) and numerical valugdatg. The

For simplicity, to obtain the explicit form we assunfig  horizontal axise represents.
=1/[1+tanh(2) in Eqg. (2). In this case the coefficients in
Eq. (37) are reduced t@y3=—3/2, p3;=— B, pss=—1/4,  From Eq.(19) the amplitudeAe of R, can be regarded as the
n=1/48, Co=2%f,/3°=1.206 89, ﬁ=3\/§/8\/§f0 order parameter of phase separation, which is given by
=0.902 037, 8,/|(UV)"|=9/4, 6,=1.289 718 7, and)_

=— i 3
0.387 814. Thus we obtain Aee 56W21.136 6% 41)
o 2 0+ y
{L=(6+—0_)}y=4By 241 1- e In the vicinity of y* the time evolution ofy is described by
+
0 0% * * ay*
G PR (36) y(m)=y*+[v(0)—y"]expg - 7|, (42)
2 ’ L*
0~ +1 Y-
where we use whereL* = eN6y*. Notice thaty* is the stable fixed point
in the time evolution(39), where we used, —0_)/L<1.
|ﬁ>1 2né% +1 Two remarks about the result of this section are ad-
- — . dressed. First we recall that to derive E4Q) from Eq.(34)
lh ' (2n+1)6+1 we assume thatt,= 1/ 1+ tanh(2). Although it is not diffi-
o i cult to obtain the result for anfp, we omit such a discussion
Herey.. is given by to avoid long and tedious calculations. Second, the charac-
[ [ teristic time for the relaxatio39) or (42) is proportional to
7;1: 2+ g2i 2_3%> +27 3p32( 1— %) the system siz&. This result is reasonable because the time
I I needed to simulate modél) is proportional to the number
(+) (+) (+) of carsN. This tendency will be confirmed by the simula-
parf 1o 12 12 tions in the next section.
0.1 2| el sl (87
=\ (B
IV. SIMULATION
Rearrangement of.. leads to o o )
To check the validity of our analysis in the preceding
8B36.(36%+1) section we perform the numerical simulation of E(.and
Y R . (38 (2) with fo=1/[1+tanh(2) and Eq.(13) under the periodic
3767 +865—8 boundary condition. We adopt the classical fourth-order

Runge-Kutta scheme with fixed time intervalt=2"4.

Substituting Eq/(38) into Eq. (36), we obtain Since our purpose is the quantitative test of E@R) and

(40), the initial condition is restricted to a symmetric kink-
(L—0,+6_)y= mﬁ( 1— l) ' (39)  antikink pair. Taking into account the scaling properties, we
¥* perform the simulation for the set of parametersN)
=(1/2,32,(1/4,69,(1/8,12§,(1/16,256) untilr,, relaxes to
where a steadily propagating state. Our results are plotted in Figs.
1-3. Figure 1 displays the data for maximig,, and mini-
_ 24BVB7+2 V¥ :3(1232+25) —0574 19 mum h,;, values of the successive car distance in a steady
4g2+9 ' 6182+132 Y state obtained from our simulation in each parameter set. The

(40 solid line in Fig. 1 is the theoretical coexistence curve
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FIG. 3. Linear combination of our theoretical curi8) and the

scaled simulation data of the relative distance of successive cars for N
(€,N)=(1/2,32,(1/4,64,(1/8,128, and(1/16,256, where N de- FIG. 4. Semilogarithmic plots ofAn(t) with the original opti-
notes the scaled data fd¥-car systems. The solid curve B(z)  mga| velocity model(3) for several system sizedl=64, 128, and
=tan €0, (z-2,)]-1+tanHéd_(z—2.)], with £=(6y*)"%16 and 256, whereN is the number of cars. The vertical axis denotes the
two fitFing parameterg, =62.5 andz,.=190.5., where the spatial gcgled amplitudd A,(t) — A* /[ An(0)— A* ], where the selected
scale is measured by the average distandg#256. amplitudeA?* is obtained from an average of the last 10 data points,

wherey* is determined from the average of the last 20 data points.

(h—hg)? The horizontal axis is the normalized tiféN. The conditions of
a=ac1-———|, A=1136@8..., (43) the simulation are=1/8, h=2, andAt=2"* The solid line rep-
A resentsf(t/N) in the text.

where we use=ag(1— €2) andAe=h—h,. The agreement

is obvious. From this figure we can see that one of theour analysis is perfect. Since, for example, we omit the time
branches is in the linearly unstable region, but the theoreticavolution of reduced dynamical models, we cannot explain
curve recovers the simulation result. Figure 2 is the directhe reason why the branch in a linearly unstable state is
comparison between the theoretical amplitydd) and the stable in our simulatior(see Fig. 1 The mechanism for
result of simulation, where the data point &%= (h., Stabilizing the branch should be explained in terms of a

—hmin)/2. We stress that the evaluated value Aoffrom  Simple physical picture. The validity of the choice of Egs.
simulation ate=1/16 is 1.142 3. ... Thus the deviation (24) and(29) is not confirmed from a mathematical point of

between simulation and theory is only 0.53%. view, although this choice works very well. Clarification of
Figure 3 demonstrates that the numerical result has a scdi?e above points will be a subject of our future research.
ing solution that has an asymmetric kink-antikink pair. The ~Let us comment on the universality class of traffic flows
linear combination of our theoretical cur¢23) and Eq.(39) and granular flows. All the models introduced here, except
is plotted as the solid line by choosing the position of thefor model(3), have asymmetric kink-antikink pairs and have
kink and the antikink. Our theoretical curve agrees with thequalitatively similar behaviors. Komatsi20] has derived
simulation value without other fitting parameters. Thus weEd. (14) as the long-wavelength equation from the fluid
have confirmed the validity of our theoretical analysis inmodel of traffic flow[11]. It is also easy to derive Eq14)
steady states. from Eq. (4) and fluid models for granular flows. In this
Figure 4 displays the time evolution of the kink amplitude Sense, granular flows through a pipe and traffic flows com-
An(t) =[Nmax(t) = hmin(t) 172 for several system sizes of the POSe a universality class and our discussion here essentially
simulation of the original OV mode(3) at e=1/8 andh can be used in any models for traffic flows and granular
=2. The data suggest that the exponential time evolution iflows. In fact, we[30] have already checked the quantitative
Eq.(42) seems to be valid even in relatively early stages. It isvalidity of our methods presented here for the fluid model in
obvious that the characteristic time for the relaxatioAfp ~ traffic flows[11]. On the other hand, the OV modé) is a
can be scaled biX. The solid line represents the theoretical SPecial case of the above generalized models. For example,
prediction, where Eq(42) in this case is reduced ti(t/N)  the models withf,=0 [Eq. (2)] andU"(h;) =0 [Eq. (4)] are
=ex{ —(8/3)y2y* €¥t/N] with y* =5/4. The agreement be- reduced to the MKdV equation. Namely, the behaviors in the
tween the theoretical curve and our numerical result is fairlyoriginal OV model are not universal in models for one-

good. Thus the validity of the time evolutiq@2) has been dimensional dissipative flows. It should be noticed that the
confirmed by the simulation. limitation of the OV model has been suggested by Komatsu

and Sasdsee the last part in Refl17]). Therefore, we be-
lieve that our analysis is important in the characterization of
the universal feature of one-dimensional dissipative flows
As we have seen in the previous sections, our theoreticaluch as granular flows through a pipe and traffic flows.
analysis gives very precise results for the separation between In realistic situations, highways have multiple lanes and
jam states and nonjam states. Of course, we do not think thaehicles can pass slow vehicles. When we include multilane

V. DISCUSSION
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effects in one-dimensional models, the separations betweesf the analysis of the added noise models for dissipative
jam states and nonjam states become obscured. Howevgarticles flows will be discussed elsewhere.

there is another universal law in quasi-one-dimensional sys-

tems for dissipative discrete element flows, i.e., a power law MISCONCEUSION

in the power spectrum. Recently, it has been shoWh31 In conclusion, we have proposed a simple generalized op-
that both model$l) and(4) supplemented by the white noise timal velocity model(1). Based on the perturbation analysis
produces a power law in the frequency spectrum of the demsf asymmetric kink solutiori23) we obtain the selected val-
sity P(f)~f~*3 numerically and analytically, whose expo- ues of its amplitude, propagating velocity, and width of kink
nent —4/3 is very close to the experimental vall0] and  as in(40). The accuracy and relevancy of the solution has
the value from the lattice-gas automata simulati@®].  been confirmed by the direct simulation.
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