
PHYSICAL REVIEW E APRIL 1998VOLUME 57, NUMBER 4
Theory of traffic jam in a one-lane model
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We propose a generalized optimal velocity model to describe one-lane traffic flows. We carry out a weakly
nonlinear analysis based on the technique of soliton perturbations and determine the selected propagating
velocity, amplitude, and width of the interface between a jam state and a nonjam state. From the direct
simulation of the model, we have confirmed the validity of our theoretical analysis.@S1063-651X~98!00204-9#

PACS number~s!: 05.20.2y, 47.54.1r, 46.10.1z, 47.20.Ky
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I. INTRODUCTION

Recently, the cooperative dynamics in dissipative syste
consisting of discrete elements has attracted much atten
There has been research on granular materials in an effo
understand the unusual behaviors of discrete element
tems @1# such as convection@2#, size segregation@3#, bub-
bling @4#, standing waves@5#, and localized excitations@6# as
well as thermodynamic descriptions of granular particles
der vertical vibrations@7#. In particular, it is interesting tha
flows of granular particles through a vertical pipe can exh
some interesting characteristics of discrete element sys
such as the formation of density waves and a power law
the power spectrum. Similarly, traffic jams in a highway a
are an attractive subject for not only engineers but a
physicists@8#. Similarities between the two phenomena a
obvious. Both consist of discrete dissipative elements,
hicles, and particles that are confined in a quasi-o
dimensional system such as a highway or a pipe. There i
optimal velocity in each system: The competition betwe
relaxation to the optimal velocity and acceleration of p
ticles produces traffic jams. We thus expect that there ex
a common and universal mathematical structure behind th
phenomena.

There are many models to describe traffic flows a
granular flows through a pipe. We believe that universal
haviors do not depend on the choice of the model. We p
pose here a simple generalized optimal velocity model
traffic flows

ẍn5a@U~xn112xn!V~xn2xn21!2 ẋn#, ~1!

wherexn is the position of thenth car anda is a constant
calledsensitivity, which is a parameter to represent drive
response. This model contains the psychological effec
drivers. Namely, the driver ofxn takes care of not only the
distance aheadxn112xn but also the distance behindxn
2xn21. The optimal velocity functionU should be a mono-
tonically increasing function of the distance ofxn112xn and
V should be a monotonically decreasing function ofxn
2xn21. Thus we adopt

*Electronic address: hisao@phys.h.kyoto-u.ac.jp
†Electronic address: tmknaka@eng.shizuoka.ac.jp
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of

U~h!5tanh~h22!1tanh~2!,

V~h!511 f 0@12tanh~h22!# ~2!

for the latter explicit calculation, wheref 0 is a constant. We
put these optimal velocity functions as the product formUV
in Eq. ~1! because the driver ofxn cannot accelerate th
vehicle without enough forward distancexn112xn even
when the distancexn2xn21 becomes short. In other words
the model includingU(xn112xn)1V(xn2xn21) is math-
ematically unstable and unphysical because the accelera
by V causes a crash of vehicles. This model~1! with Eq. ~2!
is a generalization of the optimal velocity~OV! model pro-
posed by Bandoet al. @9#

ẍn5a@U~xn112xn!2 ẋn#. ~3!

Our model is also similar to the model of granular flow
a one-dimensional tube

ẍn5z@Ũ~xn112xn21!2 ẋn#1w~xn112xn!2w~xn2xn21!,
~4!

whereŨ andw are the sedimentation rate and soft-core
pulsion force, respectively@10#. The explicit forms ofŨ and
the forcew are not important in our argument. Although re
systems contain a variety of vehicles or particles and high
dimensional effects, we believe that the most essential p
of both traffic flows and granular flows through a pipe can
understood by pure one-dimensional models~1! and ~4!.

There is a fluid field model to describe traffic flows@11#
that consists of mass-conservation and momentu
conservation laws. This fluid model is similar to fluid mode
that describe granular flows through a pipe and fluidiz
beds@12–14# and a mixture of polymers@15#. At first sight
fluid models are very different from discrete models such
~1!, ~3!, and ~4!. However, there is common mathematic
structure. The fluid models of granular flows are reduced
the Korteweg–de Vries~KdV! equation near the neutra
curve of the linear stability@13,14#. Kurtze and Hong@16#
also derived the KdV equation from the fluid model of traffi
flow @11#. Of course, it is easy to demonstrate that the d
crete models~1!, ~3!, and~4! are reduced to the KdV equa
tion near the neutral curve. Thus, at least it has been c
firmed that ~i! there is a universal mathematical structu
3839 © 1998 The American Physical Society
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3840 57HISAO HAYAKAWA AND KEN NAKANISHI
behind traffic flows and granular flows regardless of
choice of a specific model and~ii ! solitons perturbed by dis
sipative corrections play an important role.

Unfortunately, the KdV equation is not adequate to d
scribe traffic jams because its solutions do not contain
interface solutions connecting the jam state and the non
state. Komatsu and Sasa@17# solved such a puzzle from th
analysis of the original OV model~3!. They have shown tha
Eq. ~3! can be reduced to the modified KdV~MKdV ! equa-
tion at a critical point for the heteroclinic bifurcation@18# or
the most unstable point on the neutral curve. They also s
that symmetric kink solitons deformed by dissipative corr
tions describe a separation between bistable states.
analysis is also consistent with a recent analysis of the
actly solvable models, which may be regarded as simpli
optimal velocity models@19#. However, as will be shown
the generalized optimal velocity model~1! and the granular
model~4! as well as the fluid model of traffic flows@11# and
fluid models in granular flows@13,14# are not reduced to the
MKdV equation at the critical point or the most unstab
point on the neutral curve. In particular, Komatsu@20# has
shown that~i! interfaces~kinks! between the jam state an
the nonjam state are asymmetric,~ii ! the critical point is, in
general, different from the most unstable point on the neu
curve, and~iii ! eventually one branch of the coexisten
curve exists in the linearly unstable region. He also dem
strated that the MKdV equation is recovered in a spe
choice of parameters of the fluid model, while fluid mode
cannot be reduced to the MKdV equation in general ca
Thus we need to clarify the characteristics of the dissipa
particle dynamics, which contains models~1! and ~4! and
fluid models@11,13,14#. For this purpose, we will focus on
the analysis of the simplest model~1! to characterize the
separation between the jam state and the nonjam state
cause the time needed to simulate model~1! is much shorter
than that for fluid models.

This paper is organized as follows. In the next section
briefly summarize the result of the linear stability analysis
the uniform solution of Eq.~1!. In Sec. III we derive a
steadily propagating solution and discuss the selection of
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propagating velocity, the amplitude, and the width of kink
To demonstrate the quantitative validity of our analysis
will compare it with the result of our simulation in Sec. IV
After the completion of our analysis of Eq.~1!, we will
briefly discuss the relation of the result and the expec
results in Eq.~4! and fluid models in Sec. V. We will sum
marize the results in Sec. VI.

II. LINEAR STABILITY OF UNIFORM FLOW

In this section we summarize the linear stability analy
of the uniform propagating flow. It is obvious that there is
constant propagating solution withxn112xn5const. Let us
rewrite Eq.~1! as

r̈ n5a@U~h1r n11!V~h1r n!2U~h1r n!V~h1r n21!2 ṙ n#,
~5!

whereh is the average distance of successive cars andr n is
xn112xn2h. The linearized equation~5! aroundr n(t)50 is
given by

r̈ n5a@U8~h!V~h!~r n112r n!

1U~h!V8~h!~r n2r n21!2r n#, ~6!

where the prime refers to the differentiation with respect
the argument. With the aid of the Fourier transformation

r q~ t !5
1

N (
n51

N

exp@2 iqnh#r n~ t !, ~7!

with q52pm/Nh and the total number of carsN, we can
rewrite Eq.~6! as

@] t2s1~q!#@] t2s2~q!#r q~ t !50, ~8!

with
s6~q!52
a

2
6A~a/2!22aDh@U,V#@12cos~qh!#1 ia~UV!8sin~qh!, ~9!
where we drop the argumenth in U and V. Dh@U,V#
[U8(h)V(h)2U(h)V8(h) denotes Hirota’s derivative. Th
solution of the initial value problem~8! is the linear combi-
nation of terms in proportion to exp@s1(q)t# and exp@s2(q)t#.
The mode proportional to exp@s2(q)t# can be interpreted a
the fast decaying mode, while the term proportional
exp@s1(q)t# is the slow and more important mode.

The violation of the linear stability of the uniform solu
tion ~6! is equivalent to Re@s1(q)#>0 where Re@s1# is the
real part of s1. Assuming qhÞ0 (qh50 is the neutral
mode!, the instability condition is given by
2~UV!82cos2S qh

2 D>aDh@U,V#. ~10!

Thus the most unstable mode exists atqh→0 and the neutral
curve for long-wavelength instability is given by

a5an~h![
2~UV!82

Dh@U,V#
. ~11!

The neutral curve in the parameter space (a,h) is shown in
Fig. 1 for f 051/@11tanh(2)# in Eq. ~2!. For later conve-
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57 3841THEORY OF TRAFFIC JAM IN A ONE-LANE MODEL
nience we write the explicit form of the long-waveleng
expansion ofs1 in the vicinity of the neutral curve

s1~q!5 ic0qh2c0
2 a2an~h!

an~h!2
~qh!22 i

~qh!3

6
c02

~qh!4

4an~h!
c0

2

1O„~qh!5
…, ~12!

wherec05(UV)8. Thus the uniform state becomes unstab

III. NONLINEAR ANALYSIS

The simplest way to describe the nonlinear dynamics
the long-wavelength expansion with the help of a suita
scaling ansatz. It is easy to derive the KdV equation near
neutral curve from Eq.~1! as in the case of fluid model
@11,13,14#. As mentioned, to describe the traffic jam form
tion, however, we should choose the critical point (a,h)
5(ac ,hc) at @U(h)V(h)#950, where the coefficient of]xr

2

becomes zero on the neutral curve, because the KdV e
tion has only pulse solutions while cubic nonlinear terms c
produce the interface solution to connect two separated
mains. The explicit critical point of Eq.~2! with f 051/@1
1tanh(2)# is given by

hc522tanh21~ 1
3 !.1.653 43; ac5 512

81 f 0
2.1.638 66.

~13!

Unfortunately, the reduced equation based on the lo
wavelength expansion of our model is an ill-posed equat
In fact, the scaling of variables such asr n(t)5er (z,t), z
5e(n1c0t), andt5e3t with e5A(ac2a)/ac leads to

]tr 5a1]zr
32a2]z

3r 1a3]z
2r 2 ~14!

in the lowest order, wherea1, a2, anda3 are constants. The
solution of Eq.~14! diverges within a finite time. The reaso
is simple. Its linearized equation aroundr 5d0 is unstable for
all scales because the solution withr 2d0.exp@ikz1lkt# has
the growth rate Re@lk#52k2a3d0, which is always positive
when a3d0.0. Therefore, the simple long-wavelength e

FIG. 1. Plots of the coexistence curve~43! @the solid line de-
noted by co(h)# and the neutral curve~11! @the dashed line denote
by an(h)# as functions ofh. The scattered points are the maximu
and the minimum distances of successive cars for a givena ob-
tained from our simulation.
.

is
e
e

a-
n
o-
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pansion adopted by Komatsu and Sasa@17# for Eq. ~3! and
a350 cannot be used in our case.

Of course, this irregularity is from the long-waveleng
approximation. The regularity of the original model~1! can
be checked easily as follows. Letx5nh be regarded as a
continuous variable. Fromr (x6h,t)5exp@6h]x#r(x,t) or the
Fourier component exp@6iqh# of the translational operato
exp@6h]x#, the function of the translational operation in th
shortest scale (qh5p in the Fourier space! is r (x6h,t)→
2r (x,t). Thus our model~5! for r (x,t) in the shortest scale
is reduced to

] t
2r 5a@W~r !2] tr #,

W~r ![U~h2r !V~h1r !2U~h1r !V~h2r !. ~15!

Substituting Eq. ~2! into Eq. ~15!, it is easy to
show W8(r )52@sech2(h2r 22)1sech2(h1r 22)#$1
1 f 0@11tanh(2)#%,0. Then the growth rate of the linearize
equation~15! by r 2d0;exp@lt1ikx# is given by

l5
2a6Aa224auW8~d0!u

2
, ~16!

where Re@l#<0 for anyd0. Thus the original model~1! is
stable for the perturbation in the short scale.

The short scale instability in Eq.~14! thus arises from the
insufficiency of the simple long-wavelength expansion. Fo
theoretical analysis beyond the simple long-wavelen
analysis, we have two methods. One is to derive a regu
ized long-wavelength equation with the help of the Pade´ ap-
proximation@21#, which is an interpolation of the short-sca
behavior and the long-scale behavior. However, the sh
scale analysis of the discrete model contains some su
problems because of the existence of the cutoff scale
addition, the reduced partial differential equation is mo
complicated than the original discrete model~1!. Another
method is that we focus only on steadily propagating so
tions for the theoretical analysis. A dynamical behavior, e
cept for steady states, can be seen from the direct simula
of the discrete model~1!, where simulation of model~1! is
much easier than the reduced partial differential equati
such as the MKdV equation. In addition, our long-time sim
lation suggests that the solution of model~1! seems to be
quickly relaxed to a steadily propagating state. Thus
adopt the latter method for our analysis.

To obtain the steadily propagating kink solution, at fir
we eliminate the fast decaying mode in Eq.~5! as

@] t2s1~]x!#r ~x,t !5~s12s2!21N@r ~x,t !#, ~17!

whereN@r # represents the nonlinear terms

N@r #

a
5U„h1eh]xr ~x,t !…V„h1r ~x,t !…2U„h1r ~x,t !…

3V„h1e2h]xr ~x,t !…2U8~h!V~h!~eh]x21!r ~x,t !

1U~h!V8~h!~12e2h]x!r ~x,t !. ~18!

Since (s12s2)21 is the inverse of the polynomial of th
differential operators, it is convenient to use the expans



-

th

a
N
th
fu
ry

pe

th
d

an

q.
o-
ept
lue

at
e-

3842 57HISAO HAYAKAWA AND KEN NAKANISHI
(s12s2)21.a21@12(2h/a)(UV)8]x1O(h2)#. It should
be noticed that Eq.~17! contains most of the important in
formation and no instability in the time evolution.

Here we assume the scaling of the variables bye
5A(ac2a)/ac as

r ~x,t !5eA 6gc0

u~UV!-u
R~z!, z5eA6g@n1c0t2e2g~ t !t#,

~19!

where the arguments inU andV are fixed ath5hc andg is
the positive free parameter that will be determined from
perturbation analysis. We substitute Eq.~19! into Eq. ~17!
and expandN@r # as

N@r #/a5 (
n51

`

(
m52

`

hmCmn]x
nr m2h3U8V8]xr ]x

2r 1•••,

~20!

where C215
1
2 (UV)9, C225

1
4 Dh@U,V#8, C235

1
12 (UV)9,

C315
1
6 (UV)-, C325

1
12Dh@U,V#9, C415

1
24 (UV)-8 with

Dh@U,V#85(d/dh)Dh@U,V#. Substituting Eq.~19! into Eq.
~17! with the help of Eq.~20!, we obtain

d

dzH d2R

dz2
2R~R221!1b

d

dz
~R2!J 5e

d

dz
M @R#, ~21!

whereb53Dh@U,V#8/(2Ac0u(UV)-u) and

M @R#5AgFr23S dR

dzD 2

2r32

dR3

dz
2r41R

42
1

4hS 4
dR

dz

1
d3R

dz3
2

2

g

dR

dzD G1ġF zR

2g5/2
2gtRG . ~22!

Here ġ5dg/dt with t5et, and 1/h5A6Dh@U,V#/c0, r23

53A6U8V8/Ac0u(UV)-u, r325A3/2Dh@U,V#9/
u(UV)-u, and r415A3c0(UV)-8/2A2u(UV)-u3.

AssumingR(z)5R0(z)1eR1(z)1•••, we obtain a solu-
tion

R0
~6 !~z!5tanh~u6z!, u65

b6Ab212

2
~23!

in the lowest order. This solution represents a kink or
antikink connecting the jam state and the nonjam state.
tice that the solution is not localized and does not satisfy
periodic boundary condition. Therefore, we need a care
treatment of the boundary condition. In fact, our prelimina
result @22# suggests that the selected value ofg under the
open boundary condition is different from that under the
riodic boundary condition.

In this paper we restrict ourselves to the case under
periodic boundary. To satisfy the periodic boundary con
tion we use

R0~z!.R0
~1 !~z2z1!211R0

~2 !~z2z2! ~24!

as an approximate solution of the lowest-order equation~21!,
where a kink-antikink pair exists atz5z1 andz5z2 . Since
e

n
o-
e
l

-

e
i-

Eq. ~24! is not an exact solution of Eq.~21!, there should be
an interaction between the kink and the antikink that is
exponential function of the distance between them@22#.

Now let us discuss the effect of perturbative terms in E
~21!. It is known that the perturbation of solitons or the s
lution including a free parameter becomes unstable exc
for the solution where the parameter has a special va
@17,23–28#. The linearized equation~21! can be reduced to

LR15
d

dz
M @R0#, ~25!

where

L5]z
31]z26R0]zR023R0

2]z12b]z
2R014b]zR0]z

12bR0]z
2 . ~26!

To obtain a regular behavior of perturbation inO(e) the
perturbed solution should satisfy the solvability condition

S C0 ,
d

dz
M @R0# D[ lim

L→`
E

2L

L

dz C0

d

dz
M @R0#50, ~27!

where 2L5eNA6g andC0 satisfies

L†C050, L†52]z
32]z13R0

2]z12bR0]z
2 . ~28!

When we adopt Eq.~24! as R0, C0 also should satisfy the
periodic boundary condition. Thus we assume

C0~z!5C0
~1 !~z2z1!211C0

~2 !~z2z2!, ~29!

whereC0
(6) is the solution of Eq.~28! when we replaceR0

by R0
(6) . SinceF0[]zC0 satisfies

L̃ †F0~z!50, L̃ †52]z
22113R0

212bR0]z , ~30!

the solution of Eq.~28! can be expressed by

C0
~6 !~z!5

a6

2 E
2z

z

dz8~sech@u6z8# !1/u6
2
,

C0
~6 !~z!52C0

~6 !~2z!, ~31!

where we use

F0
~6 !~z!5~sech@u6z# !1/u6

2
. ~32!

The constanta6 in Eq. ~31! is determined to satisfyC0
(6`)521. Thus we obtain

a65
2u6

I 0
~6 !

,

I n
~6 !5E

2`

`

dx~sechx!1/u6
2

12n5Ap
G~1/2u6

2 1n!

G~1/2u6
2 1n11/2!

,

~33!

whereG(x) is the Gamma function. It should be noticed th
C0(z) is not a localized function. Therefore, we cannot n
glect the boundary effects in the solvability condition~27!.
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57 3843THEORY OF TRAFFIC JAM IN A ONE-LANE MODEL
Let us rewrite Eq.~27! as

†C0M @R0#‡2L
L 5~F0~z!,M @R0# ! ~34!

where@ f (z)#2L
L 5 f (L)2 f (2L). From Eq.~22! it is obvious

that the contribution, except for terms proportional tor41 and
zR, is zero on the left-hand side of Eq.~34! under any
boundary conditions. Notice that the contribution from t
term proportional totR vanishes because of its symmetry.
we adopt the periodic boundary condition and use Eqs.~24!
and ~29!, the contribution from the termr41 cancels@29#.
Thus the left-hand side of Eq.~34! is reduced to

†C0M @R0#‡2L
L 5

ġ

g5/2
L. ~35!

On the other hand, the right-hand side of Eq.~34! is the
integration of the product of Eqs.~22! and ~32!.

For simplicity, to obtain the explicit form we assumef 0
51/@11tanh(2)# in Eq. ~2!. In this case the coefficients i
Eq. ~37! are reduced tor23523/2, r3252b, r41521/4,
h51/4b, c0526f 0/3351.206 89, b53A3/8A2 f 0
50.902 037, 6c0 /u(UV)-u59/4, u151.289 718 7, andu2

520.387 814. Thus we obtain

$L2~u12u2!%ġ54bg2H u1

u1
2 11

S 12
g

g1
D

2
u2

u2
2 11

S 12
g

g2
D J , ~36!

where we use

I n11
~6 !

I n
~6 !

5
2nu6

2 11

~2n11!u6
2 11

.

Hereg6 is given by

g6
21521u6

2 S 223
I 2

~6 !

I 1
~6 !D 12hF3r32S 12

I 2
~6 !

I 1
~6 !D

1
r41

u6
S I 0

~6 !

I 1
~6 !

221
I 2

~6 !

I 1
~6 !D 2r23u6

I 2
~6 !

I 1
~6 !G . ~37!

Rearrangement ofg6 leads to

g65
8bu6~3u6

2 11!

37u6
4 18u6

2 28
. ~38!

Substituting Eq.~38! into Eq. ~36!, we obtain

~L2u11u2!ġ5ag2S 12
g

g*
D , ~39!

where

a5
24bAb212

4b219
, g* 5

3~12b2125!

61b21132
50.574 189 . . . .

~40!
From Eq.~19! the amplitudeAe of R0 can be regarded as th
order parameter of phase separation, which is given by

Ae[
3

2
eAg* .1.136 63e. ~41!

In the vicinity of g* the time evolution ofg is described by

g~t!.g* 1@g~0!2g* #expF2
ag*

L*
tG , ~42!

whereL* 5eNA6g* . Notice thatg* is the stable fixed point
in the time evolution~39!, where we use (u12u2)/L!1.

Two remarks about the result of this section are a
dressed. First we recall that to derive Eq.~40! from Eq. ~34!
we assume thatf 051/@11tanh(2)#. Although it is not diffi-
cult to obtain the result for anyf 0, we omit such a discussion
to avoid long and tedious calculations. Second, the cha
teristic time for the relaxation~39! or ~42! is proportional to
the system sizeL. This result is reasonable because the ti
needed to simulate model~1! is proportional to the numbe
of carsN. This tendency will be confirmed by the simula
tions in the next section.

IV. SIMULATION

To check the validity of our analysis in the precedin
section we perform the numerical simulation of Eqs.~1! and
~2! with f 051/@11tanh(2)# and Eq.~13! under the periodic
boundary condition. We adopt the classical fourth-ord
Runge-Kutta scheme with fixed time intervalDt5224.
Since our purpose is the quantitative test of Eqs.~23! and
~40!, the initial condition is restricted to a symmetric kink
antikink pair. Taking into account the scaling properties,
perform the simulation for the set of parameters (e,N)
5(1/2,32),(1/4,64),(1/8,128),(1/16,256) untilr n relaxes to
a steadily propagating state. Our results are plotted in F
1–3. Figure 1 displays the data for maximumhmax and mini-
mum hmin values of the successive car distance in a ste
state obtained from our simulation in each parameter set.
solid line in Fig. 1 is the theoretical coexistence curve

FIG. 2. Comparison ofAm* between theoretical values@solid line
Am(e)51.136 63e# in Eq. ~41! and numerical value~data!. The
horizontal axise representse.
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a5acS 12
~h2hc!

2

A2 D , A51.136 63 . . . , ~43!

where we usea5ac(12e2) andAe5h2hc . The agreemen
is obvious. From this figure we can see that one of
branches is in the linearly unstable region, but the theoret
curve recovers the simulation result. Figure 2 is the dir
comparison between the theoretical amplitude~41! and the
result of simulation, where the data point isAm* [(hmax

2hmin)/2. We stress that the evaluated value ofA from
simulation ate51/16 is 1.142 73 . . . . Thus the deviation
between simulation and theory is only 0.53%.

Figure 3 demonstrates that the numerical result has a s
ing solution that has an asymmetric kink-antikink pair. T
linear combination of our theoretical curve~23! and Eq.~38!
is plotted as the solid line by choosing the position of t
kink and the antikink. Our theoretical curve agrees with
simulation value without other fitting parameters. Thus
have confirmed the validity of our theoretical analysis
steady states.

Figure 4 displays the time evolution of the kink amplitu
Am(t)5@hmax(t)2hmin(t)#/2 for several system sizes of th
simulation of the original OV model~3! at e51/8 andh
52. The data suggest that the exponential time evolutio
Eq. ~42! seems to be valid even in relatively early stages. I
obvious that the characteristic time for the relaxation toAm*
can be scaled byN. The solid line represents the theoretic
prediction, where Eq.~42! in this case is reduced tof (t/N)
5exp@2(8/3)A2g* e3t/N# with g* 55/4. The agreement be
tween the theoretical curve and our numerical result is fa
good. Thus the validity of the time evolution~42! has been
confirmed by the simulation.

V. DISCUSSION

As we have seen in the previous sections, our theore
analysis gives very precise results for the separation betw
jam states and nonjam states. Of course, we do not think

FIG. 3. Linear combination of our theoretical curve~23! and the
scaled simulation data of the relative distance of successive car
(e,N)5~1/2,32!,~1/4,64!,~1/8,128!, and~1/16,256!, where N de-
notes the scaled data forN-car systems. The solid curve isR(z)
5tanh@ju1(z2z1)#211tanh@ju2(z2z2)#, with j5(6g* )1/2/16 and
two fitting parametersz1562.5 andz25190.5, where the spatia
scale is measured by the average distance inN5256.
e
al
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e
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y
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at

our analysis is perfect. Since, for example, we omit the ti
evolution of reduced dynamical models, we cannot expl
the reason why the branch in a linearly unstable state
stable in our simulation~see Fig. 1!. The mechanism for
stabilizing the branch should be explained in terms o
simple physical picture. The validity of the choice of Eq
~24! and~29! is not confirmed from a mathematical point o
view, although this choice works very well. Clarification o
the above points will be a subject of our future research.

Let us comment on the universality class of traffic flow
and granular flows. All the models introduced here, exc
for model~3!, have asymmetric kink-antikink pairs and hav
qualitatively similar behaviors. Komatsu@20# has derived
Eq. ~14! as the long-wavelength equation from the flu
model of traffic flow@11#. It is also easy to derive Eq.~14!
from Eq. ~4! and fluid models for granular flows. In thi
sense, granular flows through a pipe and traffic flows co
pose a universality class and our discussion here essen
can be used in any models for traffic flows and granu
flows. In fact, we@30# have already checked the quantitati
validity of our methods presented here for the fluid mode
traffic flows @11#. On the other hand, the OV model~3! is a
special case of the above generalized models. For exam
the models withf 050 @Eq. ~2!# andŨ9(hc)50 @Eq. ~4!# are
reduced to the MKdV equation. Namely, the behaviors in
original OV model are not universal in models for on
dimensional dissipative flows. It should be noticed that
limitation of the OV model has been suggested by Koma
and Sasa~see the last part in Ref.@17#!. Therefore, we be-
lieve that our analysis is important in the characterization
the universal feature of one-dimensional dissipative flo
such as granular flows through a pipe and traffic flows.

In realistic situations, highways have multiple lanes a
vehicles can pass slow vehicles. When we include multila

for

FIG. 4. Semilogarithmic plots ofAm(t) with the original opti-
mal velocity model~3! for several system sizes:N564, 128, and
256, whereN is the number of cars. The vertical axis denotes
scaled amplitude@Am(t)2Am* #/@Am(0)2Am* #, where the selected
amplitudeAm* is obtained from an average of the last 10 data poin
whereg* is determined from the average of the last 20 data poi
The horizontal axis is the normalized timet/N. The conditions of
the simulation aree51/8, h52, andDt5224. The solid line rep-
resentsf (t/N) in the text.
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effects in one-dimensional models, the separations betw
jam states and nonjam states become obscured. How
there is another universal law in quasi-one-dimensional s
tems for dissipative discrete element flows, i.e., a power
in the power spectrum. Recently, it has been shown@10,31#
that both models~1! and~4! supplemented by the white nois
produces a power law in the frequency spectrum of the d
sity P( f ); f 24/3 numerically and analytically, whose expo
nent 24/3 is very close to the experimental value@10# and
the value from the lattice-gas automata simulation@32#.
From this success the essential effects of randomness su
passing vehicles and a variety of vehicles seem to be re
sented by the addition of white noise to the models~1! and
~4! @33#. In this sense, again, we believe that the fundame
research on pure one-dimensional models is meaningful.
details
pn
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of the analysis of the added noise models for dissipa
particles flows will be discussed elsewhere.

VI. CONCLUSION

In conclusion, we have proposed a simple generalized
timal velocity model~1!. Based on the perturbation analys
of asymmetric kink solution~23! we obtain the selected val
ues of its amplitude, propagating velocity, and width of ki
as in ~40!. The accuracy and relevancy of the solution h
been confirmed by the direct simulation.
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